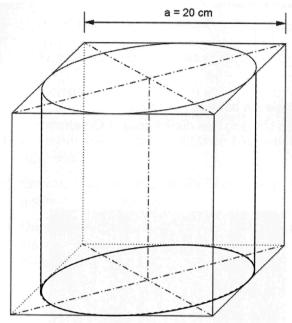
Aus einem Holzwürfel soll ein möglichst großer Zylinder hergestellt werden (siehe Skizze).



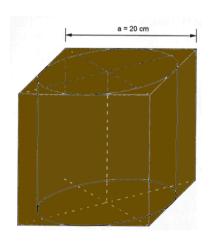
- a) Berechne das Volumen des Holzes, das dafür entfernt werden muss.
- b) Ermittle den Oberflächeninhalt des entstehenden Zylinders.

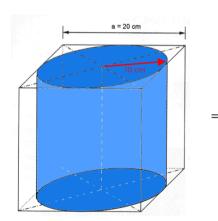
a) Volumen des Holzes, das entfernt wird.

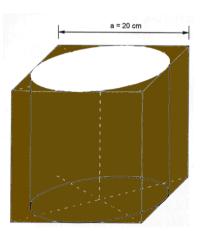
Volumen Würfel

Volumen Zylinder

Holzabfall







Volumen Quader:

Volumen Zylinder:

Allgemeine Formel:

Allgemeine Formel $V_Z = \mathbf{r} \cdot \mathbf{r} \cdot \mathbf{m} \cdot \mathbf{h}_K$

 $V_W = a \cdot a \cdot a$

Einsetzen in die Formel:

Einsetzen: $V_{QW} = 20 \cdot 20 \cdot 20$

 $V_Z = 10 \cdot 10 \cdot 3,14 \cdot 20$

 $V_W = 8000 \text{ cm}^3$

 $V_Z = 6280 \text{ cm}^3$

Der Würfel hat ein Volumen von 8000 cm³.

Der Zylinder hat ein Volumen von 6280 cm^{3.}

8000 cm²

6280 cm²

1720 cm³

Antwort: Das Holz, das entfernt wird hat ein Restvolumen von 1720 cm³.

b) Oberfläche Zylinder

Grundfläche

314 cm²

+ 10 cm + Mantellinie: u = d · 3,14 or u = 62,8 cm = =

Mantelfläche

1256 cm²

Oberfläche

1884 cm²

Formel Kreis: Formel Kreis Formel Rechteck: $A_K = r^2 \bullet \pi \qquad A_K = r^2 \bullet \pi \qquad A_R = \alpha \bullet b$ Einsetzen Einsetzen Einsetzen: $A_K = r^2 \bullet \pi \qquad A_R = \alpha \bullet b$ $A_K = r^2 \bullet \pi \qquad A_R = \alpha \bullet b$ $A_K = 10^2 \bullet 3,14 \qquad A_R = (20 \bullet 3,14) \bullet 20$

Deckfläche

 $A_{K} = 314 \text{ cm}^{2}$ $A_{K} = 314 \text{ cm}^{2}$ $A_{R} = 1256 \text{ cm}^{2}$

+

Antwort: der Zylinder hat eine Oberfläche von 1884 cm².

314 cm²