
Qualiaufgabe 2004 Aufgabengruppe II - 4

Ein massives Werkstück wird aus Messing (Dichte: ρ = 8,5 kg/dm³) hergestellt. Es hat die Form eines Zylinders, aus dem zwei gleich große Kegel herausgefräst werden (siehe Skizze). Dadurch verringert sich die Masse des Zylinders um ein Fünftel.

Berechne die Höhe des Kegels.

Volumen des Zylinders

Allgemeine Formel: $V_Z = r^2 \cdot \pi \cdot h_k$

Einsetzen: $V_Z = 200^2 \cdot 3,14 \cdot 750$

 $V_Z = 94200000 \text{ mm}^3$

 $V_Z = 94.2 \text{ dm}^3$

Masse des Zylinders in kg

Masse = Volumen · Dichte

Masse = $94,2 \text{ dm}^3 \cdot 8,5 \text{ kg/dm}^3$

Masse = 800.7 kg

Masse aller zwei Kegels in kg

Masse = 800,7 : 5 Masse = 160,14 kg

Masse eines Kegels

Masse = 160,14 kg : 2 Masse = <u>80,07 kg</u>

Volumen eines Kegels

Masse = Volumen · Dichte

80,07 kg = Volumen \cdot 8,5 kg/dm³ /: 8,5

 9.42 dm^3 = Volumen

Höhe des Kegels in dm

Allgemeine Formel: $V_K = \frac{1}{3} \cdot r^2 \cdot \pi \cdot h_K$

Einsetzen: $9,42 \text{ dm}^3 = \frac{1}{3} \cdot 160 \cdot 3,14 \cdot h_K$ /: $160 / 3,14 / \cdot 3$

 $3.515 = h_{K}$

Antwort: der Kegel ist 3,52 dm hoch.